Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods. And relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.
translated by 谷歌翻译
Aleatoric不确定性量化寻求对随机响应的分配知识,这对于机器学习应用中的可靠性分析和鲁棒性改善非常重要。先前对息肉不确定性估计的研究主要针对封闭形成的条件密度或方差,这需要对数据分布或维度的强大限制。为了克服这些限制,我们研究了有条件的生成模型,以估计不确定性。我们介绍了两个指标,以测量适合这些模型的两个条件分布之间的差异。这两个指标都可以通过对条件生成模型的蒙特卡洛模拟轻松而公正地计算,从而促进其评估和培训。我们以数字方式证明了我们的指标如何提供有条件分布差异的正确度量,并可用于训练有条件的模型与现有基准有竞争力。
translated by 谷歌翻译
自动识别基础心脏异常的结构底物可以潜在地为介入程序提供实时指导。有了心脏组织底物的了解,可以通过检测心律不齐的底物来进一步优化复杂的心律不齐和心室心动过速等复杂的心律不齐和心室心动过速。光学相干断层扫描(OCT)是一种实时成像方式,有助于满足这一需求。心脏图像分析的现有方法主要依赖于完全监督的学习技术,这些技术遇到了在像素标签的劳动密集型注释过程中工作量的缺点。为了减少对像素标签的需求,我们使用人类心脏底物的OCT图像上的图像级注释开发了一个两阶段的深度学习框架,用于心脏脂肪组织分割。特别是,我们将类激活映射与超像素分割整合在一起,以解决心脏组织分割中提出的稀疏组织种子挑战。我们的研究弥合了自动组织分析的需求与缺乏高质量像素的注释之间的差距。据我们所知,这是第一项尝试通过弱监督的学习技术来解决OCT图像上心脏组织分割的研究。在体外人类心脏OCT数据集中,我们证明了我们对图像级注释的弱监督方法可与对像素式注释进行训练的完全监督方法相当。
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Logical reasoning of text is an important ability that requires understanding the information present in the text, their interconnections, and then reasoning through them to infer new conclusions. Prior works on improving the logical reasoning ability of language models require complex processing of training data (e.g., aligning symbolic knowledge to text), yielding task-specific data augmentation solutions that restrict the learning of general logical reasoning skills. In this work, we propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities. We select a subset of Wikipedia, based on a set of logical inference keywords, for continued pretraining of a language model. We use two self-supervised loss functions: a modified masked language modeling loss where only specific parts-of-speech words, that would likely require more reasoning than basic language understanding, are masked, and a sentence-level classification loss that teaches the model to distinguish between entailment and contradiction types of sentences. The proposed training paradigm is both simple and independent of task formats. We demonstrate the effectiveness of APOLLO by comparing it with prior baselines on two logical reasoning datasets. APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
translated by 谷歌翻译
Generating realistic motions for digital humans is a core but challenging part of computer animations and games, as human motions are both diverse in content and rich in styles. While the latest deep learning approaches have made significant advancements in this domain, they mostly consider motion synthesis and style manipulation as two separate problems. This is mainly due to the challenge of learning both motion contents that account for the inter-class behaviour and styles that account for the intra-class behaviour effectively in a common representation. To tackle this challenge, we propose a denoising diffusion probabilistic model solution for styled motion synthesis. As diffusion models have a high capacity brought by the injection of stochasticity, we can represent both inter-class motion content and intra-class style behaviour in the same latent. This results in an integrated, end-to-end trained pipeline that facilitates the generation of optimal motion and exploration of content-style coupled latent space. To achieve high-quality results, we design a multi-task architecture of diffusion model that strategically generates aspects of human motions for local guidance. We also design adversarial and physical regulations for global guidance. We demonstrate superior performance with quantitative and qualitative results and validate the effectiveness of our multi-task architecture.
translated by 谷歌翻译
We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark (DUE).
translated by 谷歌翻译
Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.
translated by 谷歌翻译